As just explained, the turns ratio of a transformer affects current as well as voltage. If voltage is doubled in the secondary, current is halved in the secondary. Conversely, if voltage is halved in the secondary, current is doubled in the secondary. In this manner, all the power delivered to the primary by the source is also delivered to the load by the secondary (minus whatever power is consumed by the transformer in the form of losses). Refer again to the transformer illustrated in figure (11).

The turns ratio is 20:1. If the input to the primary is 0.1 ampere at 300 volts, the power in the primary is P = E X I = 30 watts. If the transformer has no losses, 30 watts is delivered to the secondary. The secondary steps down the voltage to 15 volts and steps up the current to 2 amperes. Thus, the power delivered to the load by the secondary is P = E X I = 15 volts X 2 amps = 30 watts.


The reason for this is that when the number of turns in the secondary is decreased, the opposition to the flow of the current is also decreased.

Hence, more current will flow in the secondary. If the turns ratio of the transformer is increased to 1:2, the number of turns on the secondary is twice the number of turns on the primary. This means the opposition to current is doubled. Thus, voltage is doubled, but current is halved due to the increased opposition to current in the secondary. The important thing to remember is that with the exception of the power consumed within the transformer, all power delivered to the primary by the source will be delivered to the load. The form of the power may change, but the power in the secondary almost equals the power in the primary.


0308.GIF (1784 bytes)


Practical power transformers, although highly efficient, are not perfect devices. Small power transformers used in electrical equipment have an 80 to 90 percent efficiency range, while large, commercial power line transformers may have efficiencies exceeding 98 percent.

The total power loss in a transformer is a combination of three types of losses. One loss is due to the dc resistance in the primary and secondary windings.
This loss is called COPPER loss or I2R loss.

The two other losses are due to EDDY CURRENTS and to HYSTERESIS in the core of the transformer. Copper loss, eddy-current loss, and Hysteresis loss result in undesirable conversion of electrical energy into heat energy.


Copper Loss

Whenever current flows in a conductor, power is dissipated in the resistance of the conductor in the form of heat. The amount of power dissipated by the conductor is directly proportional to the resistance of the wire, and to the square of the current through it. The greater the value of either resistance or current, the greater is the power dissipated. The primary and secondary windings of a transformer are usually made of low-resistance copper wire.

The resistance of a given winding is a function of the diameter of the wire and its length. Copper loss can be minimized by using the proper diameter wire. Large diameter wire is required for high-current windings, whereas small diameter wire can be used for low-current windings.


Eddy-Current Loss

The core of a transformer is usually constructed of some type of ferromagnetic material because it is a good conductor of magnetic lines of flux.

Whenever the primary of an iron-core transformer is energized by an alternating-current source, a fluctuating magnetic field is produced. This magnetic field cuts the conducting core material and induces a voltage into it. The induced voltage causes random currents to flow through the core which dissipates power in the form of heat. These undesirable currents are called


To minimize the loss resulting from eddy currents, transformer cores are LAMINATED. Since the thin, insulated laminations do not provide an easy path for current, eddy-current losses are greatly reduced.

Hysteresis Loss

When a magnetic field is passed through a core, the core material becomes magnetized. To become magnetized, the domains within the core must align themselves with the external field. If the direction of the field is reversed, the domains must turn so that their poles are aligned with the new direction of the external field.


Power transformers normally operate from either 50 Hz, or 400 Hz alternating current. Each tiny domain must realign itself twice during each cycle, or a total of 100 times a second when 50 Hz alternating current is used. The energy used to turn each domain is dissipated as heat within the iron core. This loss, called HYSTERESIS LOSS, can be thought of as resulting from molecular friction. Hysteresis loss can be held to a small value by proper choice of core materials.



To compute the efficiency of a transformer, the input power to and the output power from the transformer must be known. The input power is equal to the product of the voltage applied to the primary and the current in the primary. The output power is equal to the product of the voltage across the secondary and the current in the secondary. The difference between the input power and the output power represents a power loss. You can calculate the percentage of efficiency of a transformer by using the standard efficiency formula shown below:


0309.GIF (1273 bytes)


Example. If the input power to a transformer is 650 watts and the output power is 610 watts, what is the efficiency?

0313.GIF (1087 bytes)


Hence, the efficiency is approximately 93.8 percent, with approximately 40 watts being wasted due to heat losses.



When a transformer is to be used in a circuit, more than just the turns ratio must be considered. The voltage, current, and power-handling capabilities of the primary and secondary windings must also be considered.

The maximum voltage that can safely be applied to any winding is determined by the type and thickness of the insulation used. When a better (and thicker) insulation is used between the windings, a higher maximum voltage can be applied to the windings.

The maximum current that can be carried by a transformer winding is determined by the diameter of the wire used for the winding. If current is excessive in a winding, a higher than ordinary amount of power will be dissipated by the winding in the form of heat. This heat may be sufficiently high to cause the insulation around the wire to break down. If this happens, the transformer may be permanently damaged.


The power-handling capacity of a transformer is dependent upon its ability to dissipate heat. If the heat can safely be removed, the power-handling capacity of the transformer can be increased. This is sometimes accomplished by immersing the transformer in oil, or by the use of cooling fins. The power-handling capacity of a transformer is measured in either the volt-ampere unit or the watt unit.


Two common power generator frequencies (50 hertz and 400 hertz) have been mentioned, but the effect of varying frequency has not been discussed.

If the frequency applied to a transformer is increased, the inductive reactance of the windings is increased, causing a greater ac voltage drop across the windings and a lesser voltage drop across the load. However, an increase in the frequency applied to a transformer should not damage it. But, if the frequency applied to the transformer is decreased, the reactance of the windings is decreased and the current through the transformer winding is increased. If the decrease in frequency is enough, the resulting increase in current will damage the transformer. For this reason a transformer may be used at frequencies above its normal operating frequency, but not below that frequency.



The transformer has many useful applications in an electrical circuit. A brief discussion of some of these applications will help you recognize the importance of the transformer in electricity and electronics.



Power transformers are used to supply voltages to the various circuits in electrical equipment. These transformers have two or more windings wound on a laminated iron core. The number of windings and the turns per winding depend upon the voltages that the transformer is to supply. Their coefficient of coupling is 0.95 or more.

You can usually distinguish between the high-voltage and low-voltage windings in a power transformer by measuring the resistance. The low-voltage winding usually carries the higher current and therefore has the larger diameter wire. This means that its resistance is less than the resistance of the high-voltage winding, which normally carries less current and therefore may be constructed of smaller diameter wire.


So far you have learned about transformers that have but one secondary winding. The typical power transformer has several secondary windings, each providing a different voltage. The schematic symbol for a typical power-supply transformer is shown in figure 5-12. For any given voltage across the primary, the voltage across each of the secondary windings is determined by the number of turns in each secondary. A winding may be center-tapped like the secondary 350 volt winding shown in the figure. To center tap a winding means to connect a wire to the center of the coil, so that between this center tap and either terminal of the winding there appears one-half of the voltage developed across the entire winding. Most power transformers have colored leads so that it is easy to distinguish between the various windings to which they are connected. Carefully examine the figure which also illustrates the color code for a typical power transformer. Usually, red is used to indicate the high-voltage leads, but it is possible for a manufacturer to use some other colors.


32NE0208.GIF (5342 bytes)
Figure (12). - Schematic diagram of a typical power transformer.


There are many types of power transformers. They range in size from the huge transformers weighing several tons-used in power substations of commercial power companies-to very small ones weighing as little as a few ounces-used in electronic equipment.



It is not necessary in a transformer for the primary and secondary to be separate and distinct windings. Figure (13) is a schematic diagram of what is known as an AUTOTRANSFORMER. Note that a single coil of wire is "tapped" to produce what is electrically a primary and secondary winding. The voltage across the secondary winding has the same relationship to the voltage across the primary that it would have if they were two distinct windings. The movable tap in the secondary is used to select a value of output voltage, either higher or lower than E p, within the range of the transformer. That is, when the tap is at point A, Es is less than Ep; when the tap is at point B, Es is greater than E p.


32NE0209.GIF (1990 bytes)
Figure (13). - Schematic diagram of an autotransformer.



Audio-frequency (AF) transformers are used in (AF) circuits as coupling devices. Audio-frequency transformers are designed to operate at frequencies in the audio frequency spectrum (generally considered to be 15 Hz to 20kHz).

They consist of a primary and a secondary winding wound on a laminated iron or steel core. Because these transformers are subjected to higher frequencies than are power transformers, special grades of steel such as silicon steel or special alloys of iron that have a very low hysteresis loss must be used for core material. These transformers usually have a greater number of turns in the secondary than in the primary; common step-up ratios being 1 to 2 or 1 to 4. With audio transformers the impedance of the primary and secondary windings is as important as the ratio of turns, since the transformer selected should have its impedance match the circuits to which it is connected.



Radio-frequency (RF) transformers are used to couple circuits to which frequencies above 20,000 Hz are applied. The windings are wound on a tube of nonmagnetic material, have a special powdered-iron core, or contain only air as the core material. In standard broadcast radio receivers, they operate in a frequency range of from 530 kHz to 1550 kHz. In a short-wave receiver, rf transformers are subjected to frequencies up to about 20 MHz - in radar, up to and even above 200 MHz.



For maximum or optimum transfer of power between two circuits, it is necessary for the impedance of one circuit to be matched to that of the other circuit. One common impedance-matching device is the transformer.

To obtain proper matching, you must use a transformer having the correct turns ratio. The number of turns on the primary and secondary windings and the impedance of the transformer have the following mathematical relationship

0317.GIF (328 bytes)


Because of this ability to match impedances, the impedance-matching transformer is widely used in electronic equipment.


Before learning safety precautions, you should look at some of the possible effects of electrical current on the human body. The following table lists some of the probable effects of electrical current on the human body.

AC 60 Hz (mA) DC (mA)


0-1 0-4


1-4 4-15


4-21 15-80

Reflex action

21-40 80-160

Muscular inhibition

40-100 160-300

Respiratory failure

Over 100 Over 300

Usually fatal


Note in the above chart that a current as low as 4 mA can be expected to cause a reflex action in the victim, usually causing the victim to jump away from the wire or other component supplying the current. While the current should produce nothing more than a tingle of the skin, the quick action of trying to get away from the source of this irritation could produce other effects (such as broken limbs or even death if a severe enough blow was received at a vital spot by the shock victim).

It is important for you to recognize that the resistance of the human body cannot be relied upon to prevent a fatal shock from a voltage as low as 115 volts or even less. Fatalities caused by human contact with 30 volts have been recorded. Tests have shown that body resistance under unfavorable conditions may be as low as 300 ohms, and possibly as low as 100 ohms (from temple to temple) if the skin is broken. Generally direct current is not considered as dangerous as an equal value of alternating current. This is evidenced by the fact that reasonably safe "let-go currents" for 60 hertz, alternating current, are 9.0 milliamperes for men and 6.0 milliamperes for women, while the corresponding values for direct current are 62.0 milliamperes for men and 41.0 milliamperes for women. Remember, the above table is a fist of probable effects. The actual severity of effects will depend on such things as the physical condition of the work area, the physiological condition and resistance of the body, and the area of the body through which the current flows. Thus, based on the above information, you MUST consider every voltage as being dangerous.


  Previous Next